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Abstract

Photoplethysmography (PPG) is increasingly applied in
cardiology beyond heart rate and SpO2, including atrial
fibrillation (AF) classification, yet links between other car-
diac parameters and PPG morphology remain unclear. In
this study, we used the Symmetric Projection Attractor Re-
construction (SPAR) on 10-minute, resting-state PPG sig-
nals obtained from 94 cardiovascular patients (mean age
68.9±12.6, 47 females) by the MAX30102 fingertip sensor.
Routine clinical data, including echocardiography, were
collected. SPAR attractor density profiles were compared
using Euclidean distance, and hierarchical clustering was
used to group patients. In the entire cohort, we found three
clusters, and AF %prevalence was the most significant fac-
tor that differentiated them (p=0.018). In the subgroup
without AF (n=68), four clusters were found and 5 clin-
ical variables showed significant differences: EF<50%
(p=0.034), Age (p=0.035), diabetes (DM2; p=0.039), and
Aortic Stenosis (AS; p=0.043). Cluster 1 appeared the
‘healthiest’, with low prevalence of reduced EF<50%,
DM2, and AS. In contrast, Cluster 2 showed the highest
proportion of patients with EF<50%, Cluster 3 was en-
riched in DM2, and Cluster 4 included older patients with
frequent AO. Our results shows the potential of using SPAR
on PPG in screening cardiac dysfunctions using wearable
devices, including heart failure.

1. Introduction

Photoplethysmography (PPG) is finding new applica-
tions in cardiology far beyond heart rate and SpO2 mea-
surements, especially in the classification of atrial fibril-
lation (AF) and other heart rhythm irregularities. In ad-
dition to analysing the inter-beat intervals (IBI), there has
been growing interest in analysing PPG waveform mor-
phology, as subtle changes in its shape can provide in-

sights into underlying hemodynamic processes and cardiac
function. Morphological analysis enables the detection
of beat-to-beat variations associated with vascular compli-
ance, pulse wave dynamics, and contractility [1]. These
features may be particularly informative in detecting and
characterising cardiovascular dysfunction. One promis-
ing approach is the Symmetric Projection Attractor Recon-
struction (SPAR) method, which visualises the trajectories
of successive beats, capturing both recurring morphologi-
cal patterns and their variability [2]. This method was used
previously in analysing PPG signals or blood pressure (BP)
waveforms in the extraction of respiratory rate [3] or sys-
tolic peak detection [4]. The main goal of our study is to
utilise SPAR in phenotyping cardiovascular patients, var-
ied in hemodynamic and structural heart parameters. The
motivation for this analysis is to explore the associations
between PPG and echocardiography data, adjusted by de-
mographic information that would extend the possible ap-
plication of the PPG technology, particularly in wearables.

2. Methods

2.1. Data collection

In this observational study, we obtained data from a
cohort of patients admitted to a cardiology ward be-
tween 2021 and 2023 and recruited for 10-minute PPG
signal measurement. The signals were collected at rest
under standardised conditions using red light with the
MAX30102 fingertip sensor. The PPG data were matched
with routine clinical data, including demographics and
echocardiography obtained from the Electronic Health
Records (EHR). The list of the parameters and indicators
includes: age, sex, BMI, BSA (Body Surface Area), DM2
– type 2 diabetes, EF – ejection fraction, HFpEF, HFm-
rEF, HFrEF - Heart failure with preserved (EF>60%),
mildly reduced (EF: 50-60%), reduced (EF<50%) ejection
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ID 88, F, 83 years, 
EF=60%, BMI=30.7 

kg/m2, no valve defects, 
CAD, DM2, no AF.

ID 66, M, 33 years, 
EF=14%, BMI=40.1 

kg/m2, no valve 
defects, no AF.

ID 11, F, 76 years, 
EF=34%, BMI=24.6 

kg/m2, mitral and aortic 
regurgitation, CAD, no AF.

ID 108, M, 85 years, 
EF=60%, Tricuspid 
regurgitation, CAD, 

DM2, AF.
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Figure 1. A. Examples of attractors obtained using the SPAR method on PPG waveforms. B. All beats centred to their
onset and the averaged beat (red). C. Patients’ clinical information.

fraction, aortic/mitral stenosis, aortic/mitral regurgitation,
CAD – coronary artery disease, smoking status, TAPSE -
Tricuspid annular plane systolic excursion (in mm), AcT -
Activated clotting time (in s), LVDD - Left ventricular di-
astolic diameter (in mm), RV - right ventricular size (mm),
Ao - aorta diameter (mm), PWDT - Posterior Wall dias-
tolic Thickness (mm).

2.2. PPG Data processing

The PPG signals were pre-processed before the attractor
reconstruction procedures under the following steps:

A) Signal quality evaluation: 10-minute signals were
evaluated using a modified signal quality algorithm based
on [5]. We modified some of the rules described in the
original work and extended the moving window length to
5 s with a hop size of 1 s. Each window was sequentially
labelled as bad/good quality. Additionally, we did not take
to analysis windows considered as a good quality but sur-
rounded by bad quality periods. B) Fiducial points detec-
tion: We detected systolic peaks (sp) and beats onsets (on)
using the MSPTDfast PPG beat detection algorithm [6].
Using these indices, we calculated a perfusion index (PI)
in each beat. C) Selection of the 90-second fragment for
analysis: from each 10-minute recording, we calculated
the mean PI [mean(PI)] and its standard deviation [std(PI)]
and the percentage of good quality classifications in 90-
second moving windows (with a hop size of 1s). We se-
lected one window with at least 80% of the good quality
fragments and has a minimum root square difference of the

mean(PI) to the maximum mean(PI) and the std(PI) to the
minimum std(PI). These criteria ensure that only the frag-
ments with the highest quality, maximum perfusion and
maximum stability were taken for analysis from each pa-
tient. D) Trend removal: We removed trends from the raw
PPG signals using the moving mean with a window of 100
samples. E) Time normalisation: we normalised the length
of each beat to 100 samples and created a new time series.
This normalisation standardises the attractor obtained from
signals with different heart rates.

2.3. SPAR

We used the SPAR method to reconstruct attractors from
the time-normalised windows of PPG signals. The full de-
scription of the method is to be found here [2]. Briefly, the
SPAR is realised by the following steps:

1. Create N=3 variables, x, y, and z, that take values
from the PPG signal from the moving points separated by
a time delay (1/N of the average inter-beat interval).

2. An iteration of the xi, yi, zi creates a single point in an
N-dimensional phase space. A collection of all data points
produces a trajectory of the signal dynamics.

3. All data points of the attractor are rotated to the stan-
dard position.

4. The attractor is mapped into 2D plane.
5. A density “heat map” is created to highlight areas

where individual loops overlap.
The heatmaps are used to create density profiles in polar

coordinates:
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Figure 2. The pipeline of performing hierarchical clustering on PPG signals followed by a dendrogram depicting the
clustering results (the subgroup without AF).

• r density distribution (dr): the density of the attractor
as a function of the radius from its centre.

• density distribution (dθ): the density of the attractor
as a function of the angle.

• attractor outline r (do): the maximum r of the attractor
for a given angle.

2.4. Clustering & phenotyping

Clustering was performed using merged density profiles
[dr, dθ, do] from each attractor. Euclidean distances be-
tween profiles served as input to hierarchical clustering
with Ward’s linkage. Clinical and hemodynamic vari-
ables were compared across clusters using chi-squared
tests (with Yates’ correction) for binary data and ANOVA
or Kruskal–Wallis tests for continuous data.

3. Results

We obtained PPG signals from 108 patients, among
whom 94 had good-quality signals for further analysis.
The mean age of that cohort was 67.5±12.7, consisting
of 43 females (46%) and 26 patients (28%) with AF. It
is known that this arrhythmia can significantly change the
dynamics of pulse wave morphology [7]. Therefore, we
performed clustering either on the entire cohort or in a sub-
group without AF (n=68). The examples of the attractors

extracted from the PPG signals are presented in Figure 1.
The results on clustering of the entire cohort (n=94) re-

vealed three clusters, with AF prevalence as the most sig-
nificant factor (p = 0.018), followed by HFmEF (p = 0.020)
and RV (p = 0.047).

In the subgroup of patients without AF (n=68), four dis-
tinct PPG morphology clusters were identified (Figure 2)
and 5 significant variables that differentiate them: HFmEF,
EF<50%, Age, DM2, and Aortic Stenosis (AS). The com-
parison of the variables with significant differences be-
tween clusters created either for the entire cohort or a sub-
group is shown in Table 1.

4. Discussion

SPAR reveals substantial heterogeneity in PPG wave-
form patterns across patients. A major driver of attrac-
tor shape is the dicrotic notch: a deep notch, common in
younger individuals, produces looping around the three at-
tractor corners. That number of corners is due to using
N=3-dimensional space, which was previously used for
PPG [2]. A future direction is to select the embedding di-
mension by maximising mutual entropy (according to Tak-
ens’ theory), which may yield a more faithful view of PPG
complexity. The differences in attractor properties are also
observed considering the prevalence of AF. The beat-to-
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Table 1. List of the significant clinical parameters between
clusters based on PPG signal morphology.

A. Entire cohort (n=94)

Variable Cl 1
(n=30)

Cl 2
(n=29)

Cl 3
(n=35) p-value

AF [%prev.] 43.3% 10.3% 28.6% 0.018

HFmEF [%] 10.0% 20.7% 0.0% 0.020

RV [cm] 3.22 2.93 2.99 0.047

B. Patients without AF (n=68)

Variable Cl 1
(n=15)

Cl 2
(n=19)

Cl 3
(n=12)

Cl 4
(n=22)

p-
value

HFmEF (%) 13.3% 26.3% 0% 0% 0.025

EF<50% 13.3% 57.9% 25.0% 27.3% 0.034

Age [years] 65.2 61.8 58.3 70.8 0.035

DM2 [%] 6.7% 10.5% 41.7% 36.4% 0.039

AS [%] 6.7% 0% 0% 22.7% 0.043

beat fluctuation due to the irregularity of the rhythm in pa-
tients with AF introduces a high level of dispersion of the
data points in the attractor.

Significant differences were observed in variables re-
flecting cardiac structure and function: HFmEF (entire co-
hort and subgroup), RV, age, and EF<50% (subgroup). Al-
though cluster prevalences often fell below 50%, distinct
phenotypes emerged in the AF-free subgroup (n = 68):
Cluster 1 appeared “healthiest” (low reduced EF, DM2,
and AS); Cluster 2 had more reduced EF; Cluster 3 was
enriched for DM2; and Cluster 4 comprised older patients
with frequent AS. Despite these differences, visual separa-
tion of attractors is challenging due to high inter-individual
variability in density profiles. A practical remedy is to
compute partial differences on merged density profiles and
localise the most discriminative fragments.

Differences in HFmEF and EF< 50% support PPG’s
potential for heart-failure screening. Prior work distin-
guished healthy vs HF using PPG-derived HRV [8]; our
findings indicate that morphology dynamics themselves
may be diagnostically useful. Further studies should map
specific morphologies linked to HF.

5. Conclusions

We presented the results of an explanatory study about
the phenotyping of cardiovascular patients using the
PPG signal and transformed into attractors by the SPAR
method. It shows the potential of PPG in triage and screen-
ing cardiac dysfunctions using wearable devices, including
heart failure. With larger datasets and clinical validation,

the SPAR method could provide a valuable input to phe-
notyping algorithms and serve as an alternative to feature-
based approaches.
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